- Visibility 171 Views
- Downloads 345 Downloads
- Permissions
- DOI 10.18231/j.jdp.2025.018
-
CrossMark
- Citation
Deep learning in dental radiographic image analysis: A review
Radiography is an important part of providing patients with good dental care, assisting with its most vital step- identifying diseases and irregularities on a dental image. Digital dentistry is thriving thanks to the emergence of Deep learning, a subdivision of Artificial Intelligence. It has upgraded the accuracy of diagnosis and efficiency of devising the treatment plan, further cutting down human errors and reducing the overall workload of dentists. These AI models can appropriately identify anatomical structures, such as categorizing the different types of teeth, and detect abnormalities, including periapical pathologies, jaw tumors, cysts, and oral cancer lesions. Apart from diagnosis, Deep Learning (DL) algorithms can thoroughly analyze the dental radiograph images to predict the treatment plan in orthodontic and implant treatments. However, with rapidly advancing technology, dental clinicians often find it challenging to grasp deep learning concepts applied in the sector due to a lack of education and training. This paper reviews deep learning concepts and their use in various modalities of dentistry with evidence from the studies performed by professionals and submitted to multiple journals.
Keywords: Dental imaging, Dental radiography, Convolutional neural network (CNN), Deep learning, Artificial intelligence
References
- Katsumata A. Deep learning and artificial intelligence in dental diagnostic imaging. Jpn Dent Sci Rev. 2023;59:329–33.
- Chan HP, Samala RK, Hadjiiski LM, Zhou C. Deep Learning in Medical Image Analysis. Adv Exp Med Biol. 2020;1213:3 015021.
- Wang CW, Huang CT, Lee JH, Li CH, Chang SW, Siao MJ, et al. A benchmark for comparison of dental radiography analysis algorithms. Med Image Anal. 2016;31:63–76.
- Nagarajan A, Namasivayam A, Perumalsamy R, Thyagarajan R. Diagnostic imaging for dental implant therapy. J Clin Imaging Sci. 2014;4(2):4.
- Estai M, Tennant M, Gebauer D, Brostek A, Vignarajan J, Mehdizadeh M, et al. Deep learning for automated detection and numbering of permanent teeth on p anoramic images. Dentomaxillofac Radiol. 2021;51(2):20210296.
- Mallya S, Lam E. White and Pharoah’s oral radiology: Principles and Interpretation. 8th Edition. Elsevier Health Sciences. 2018.
- Barbieri A, Almeida R, Dds S, Naressi S, Carvalho M, Luiz C, et al. The importance of panoramic radiography as an auxiliary instrument in clinical and legal dental practices. ARC J Forensic Sci. 2016;1(1):1–9.
- Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging. 2019;49(4):939–
- Giri D. Artificial Intelligence - Future trend in Oral Diagnosis and Radiology. Int J Curr Sci Res Rev. 2022;5(9):3405–9.
- Khanagar SB, Al-Ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance 76 Shanmugam et al. / The Journal of Dental Panacea 2025;7(2):72-76 of artificial intelligence in dentistry – A systematic review. J Dent Sci. 2020;16(1):508–22.
- Kufel J, Bargieł-Łączek K, Kocot S, Koźlik M, Bartnikowska W, Janik M, et al. What is machine Learning, artificial neural networks and Deep Learning?—Examples of Practical applications in medicine. Diagnostics. 2023;13(15):2582.
- Heo MS, Kim JE, Hwang JJ, Han SS, Kim JS, Yi WJ, et al. Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol. 2020;50(3):20200375.
- Yamashita R, Nishio M, Gian RK DO, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging. 2018;9(4):611–29.
- Suryani D, Shoumi MN, Wakhidah R. Object detection on dental x- ray images using deep learning method. IOP Conf Ser Mater Sci Eng. 2021;1073(1):012058.
- Budagam D, Kumar A, Ghosh S, Shrivastav A, Imanbayev AZ, Akhmetov IR, et al. Instance segmentation and teeth classification in panoramic x-rays. arXiv (Cornell University). 2024.
- Cejudo JE, Chaurasia A, Feldberg B, Krois J, Schwendicke F. Classification of dental radiographs using deep learning. J Clin Med. 2021;10(7):1496.
- Kang J, Le VNT, Lee DW, Kim S. Diagnosing oral and maxillofacial diseases using deep learning. Sci Rep. 2024;14(1):2497.
- Kim H. Deep learning in Dental Radiographic Imaging. J Korean Acad Pedtatr Dent. 2024;51(1):1–10.
- Rubiu G, Bologna M, Cellina M, Cè M, Sala D, Pagani R, et al. Teeth segmentation in panoramic dental x-ray using Mask regional convolutional neural network. Appl Sci. 2023;13(13):7947.
- Thanh MTG, Van Toan N, Ngoc VTN, Tra NT, Giap CN, Nguyen DM. Deep learning application in dental caries detection using intraoral photos taken by smartphones. Appl Sci. 2022;12(11):5504.
- Esmaeilyfard R, Bonyadifard H, Paknahad M. Dental caries detection and classification in CBCT images using deep learning. Int Dent J. 2023;74(2):328–34.
- Abrar AY, Ahmed N, Aymen U, Rahul NA. Artificial intelligence in orthodontics: A way towards modernization. IP Indian J Orthod Dentofac Res. 2023;9(1):3–7.
- Kazimierczak N, Kazimierczak W, Serafin Z, Nowicki P, Nożewski J, Janiszewska-Olszowska J. AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning—A Comprehensive Review. J Clin Med. 2024;13(2):344.
- Kunz F, Stellzig-Eisenhauer A, Boldt J. Applications of Artificial Intelligence in Orthodontics—An Overview and perspective based on the current state of the art. Appl Sci. 2023;13(6):3850.
- Hwang HW, Moon JH, Kim MG, Donatelli RE, Lee SJ. Evaluation of automated cephalometric analysis based on the latest deep learning method. Angle Orthod. 2021;91(3):329–35.
- Shah H, Hernandez PR, Budin F, Deepak Roy Chittajallu, Jean Baptiste Vimort, Walters R, et al. Automatic Quantification Framework to Detect Cracks in Teeth. Proc SPIE Int Soc Opt Eng. 2018;10578:105781K.
- Hu Z, Cao D, Hu Y, Wang B, Zhang Y, Tang R, et al. Diagnosis of in vivo vertical root fracture using deep learning on cone-beam CT images. BMC Oral Health. 2022;22(1):382.
- Danks RP, Bano S, Orishko A, Tan HJ, Sancho FM, D’Aiuto F, et al. Automating Periodontal bone loss measurement via dental landmark localisation. Int J Com Assist Radiol Surg. 2021;16(7):1189–99.
- Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, et al. Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol. 2019;36(4):337–43.
- Park W, Huh JK, Lee JH. Automated deep learning for classification of dental implant radiographs using a large multi-center dataset. Scientific Rep. 2023;13(1):4862.
- Yang H, Jo E, Kim HJ, Cha IH, Jung YS, Nam W, et al. Deep learning for automated detection of cyst and tumors of the jaw in panoramic radiographs. J Clin Med. 2020;9(6):1839.
- Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. J Dent Res. 2020;99(7):769–74.
- Oztekin F, Katar O, Sadak F, Yildirim M, Cakar H, Aydogan M, et al. An explainable deep learning model to prediction dental caries using panoramic radiograph images. Diagnostics. 2023;13(2):226.
How to Cite This Article
Vancouver
Shanmugam H, Airen L, Rawat S. Deep learning in dental radiographic image analysis: A review [Internet]. J Dent Panacea. 2025 [cited 2025 Oct 02];7(2):72-76. Available from: https://doi.org/10.18231/j.jdp.2025.018
APA
Shanmugam, H., Airen, L., Rawat, S. (2025). Deep learning in dental radiographic image analysis: A review. J Dent Panacea, 7(2), 72-76. https://doi.org/10.18231/j.jdp.2025.018
MLA
Shanmugam, Hemalatha, Airen, Lavanya, Rawat, Saumya. "Deep learning in dental radiographic image analysis: A review." J Dent Panacea, vol. 7, no. 2, 2025, pp. 72-76. https://doi.org/10.18231/j.jdp.2025.018
Chicago
Shanmugam, H., Airen, L., Rawat, S.. "Deep learning in dental radiographic image analysis: A review." J Dent Panacea 7, no. 2 (2025): 72-76. https://doi.org/10.18231/j.jdp.2025.018