

Content available at: https://www.ipinnovative.com/open-access-journals

The Journal of Dental Panacea

Journal homepage: https://www.jdentalpanacea.org/

Editorial

Antisenescence therapy: The next leap in periodontal medicine

Annapurna Ahuja¹, Nayana Patel²

¹Dept. of Periodontics and Implant Dentistry, Hazaribagh College of Dental Sciences and Hospital, Hazaribagh, Jharkhand, India. ²Government Dental College, Jamnagar, Gujarat, India.

Received: 06-10-2025; Accepted: 12-10-2025; Available Online: 28-10-2025

This is an Open Access (OA) journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: reprint@ipinnovative.com

Aging is an inescapable biological reality—but the tissue damage it brings may not be. Over the past decade, science has begun to uncover one of the most intriguing secrets of aging: the role of cellular senescence in driving chronic inflammation, tissue breakdown, and impaired healing. This understanding is now transforming how we view oral and periodontal diseases. What was once accepted as an inevitable outcome of age is emerging as a potential target for intervention. 1,2

1. Senescence: The Silent Saboteur

Senescent cells are damaged or stressed cells that permanently stop dividing. Though metabolically active, they release a flood of inflammatory and tissue-degrading molecules known collectively as the senescence-associated secretory phenotype (SASP).

In the mouth, these cells accumulate in periodontal tissues, creating a low-grade inflammatory state—sometimes called inflammaging. This persistent inflammatory environment slows healing, accelerates bone resorption, and undermines periodontal stability, even in the absence of overt infection.³⁻⁵

2. Why Traditional Therapies Fall Short

Traditional periodontal treatments—scaling, root planing, surgery, and antimicrobial therapy—are highly effective at removing bacterial plaque and calculus. Yet, they rarely address the underlying biological aging of the tissue. Senescent cells remain behind, continuing to secrete

inflammatory mediators and impair regeneration. This may explain why, despite excellent clinical care, some patients still experience chronic inflammation or relapse of disease.

3. The Promise of Senotherapy

A new therapeutic vision is taking shape—senotherapy, the targeted removal or modulation of senescent cells to rejuvenate tissue function. Senotherapeutic agents work in two main ways:

- 1. *Senolytics* eliminate senescent cells directly.
- 2. **Senomorphics** suppress their inflammatory secretions without killing the cells.

Among the most promising of these agents is the combination of Dasatinib (a tyrosine kinase inhibitor) and Quercetin (a natural flavonoid), often abbreviated as D+Q. This combination has shown strong synergy in preclinical models, reducing senescent cell numbers, dampening SASP activity, and improving tissue repair responses.^{6,7}

4. From Bench to the Gingiva

Recent studies have linked Fusobacterium nucleatum, a key periodontal pathogen, to the induction of senescence-like changes in gingival epithelial cells. This bacterium alters lysosomal function and nuclear integrity, leading to impaired cell proliferation and tissue renewal.

Encouragingly, treatment with D+Q has been shown to reverse these senescence markers in vitro and reduce alveolar bone loss in vivo in aged animal models. These findings

*Corresponding author: Nayana Patel Email:drnayanapatel@gmail.com provide a glimpse of what periodontal therapy could look like in the near future—one that not only controls infection but rejuvenates aging tissue at the cellular level.

5. The Road Ahead

The promise of senotherapy is compelling, but much remains to be proven. The translation from laboratory to clinic requires careful testing—particularly regarding dosage, safety, delivery mechanisms, and long-term outcomes. However, the conceptual shift it represents is profound: from merely repairing tissue to reprogramming, it for regeneration.

If future clinical trials confirm current findings, antisenescence therapy could redefine periodontal care, offering patients not just symptom control but true biological rejuvenation. Moreover, since oral inflammation has systemic effects, these benefits may extend beyond the mouth—potentially influencing overall health and longevity.⁸⁻¹⁰

6. Aging Gracefully, at the Cellular Level

Antisenescence therapy represents more than a new drug class—it's a new philosophy of care. By targeting the molecular roots of aging, we may one day preserve oral vitality well into advanced age. The ultimate goal is not simply to save teeth, but to sustain health, function, and resilience—cell by cell, tissue by tissue, year by year.

7. Conflict of Interest

None.

References

 González-Gualda E, Baker AG, Fruk L, Muñoz-Espín D. A guide to assessing cellular senescence in vitro and in vivo. FEBS J. 2021;288(1):56–80. https://doi:10.1111/febs.15570

- Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. *Nat Med.* 2022;28(8):1556–68. https://doi:10.1038/s41591-022-01923-y
- Huang W, Hickson LJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. *Nat Rev Nephrol*. 2022;18(10):611–27. https://doi:10.1038/s41581-022-00601-z
- Albuquerque-Souza E, Crump KE, Rattanaprukskul K, Li Y, Shelling B, Xia-Juan X. et al. TLR9 mediates periodontal aging by fostering senescence and inflammaging. J Dent Res. 2022;101(13):1628–36. https://doi:10.1177/00220345221110108
- Albuquerque-Souza E, Shelling B, Jiang M, Xia XJ, Rattanaprukskul K, Sahingur SE. Fusobacterium nucleatum triggers senescence phenotype in gingival epithelial cells. Mol Oral Microbiol. 2024;9(2):29–39. https://doi:10.1111/omi.12432
- Zhu Y, Anastasiadis ZP, Espindola Netto JM, Evans T, Tchkonia T, Kirkland JL. Past and future directions for research on cellular senescence. Cold Spring Harb Perspect Med. 2024;14(2):a041205. https://doi:10.1101/cshperspect.a041205
- Rattanaprukskul K, Xia XJ, Jiang M, Albuquerque-Souza E, Bandyopadhyay D, Sahingur SE. Molecular signatures of senescence in periodontitis: clinical insights. *J Dent Res*. 2024;103(8):800–8. https://doi:10.1101/cshperspect.a041205
- 8. Gonzales MM, Garbarino VR, Kautz TF, Palavicini JP, Lopez-Cruzan M. et al. Senolytic therapy in mild Alzheimer's disease: a phase 1 feasibility trial. *Nat Med.* 2023;29(10):2481–8. https://doi:10.1038/s41591-023-02543-w
- Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N. et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. *Aging Cell*. 2015;14(4):644–58. https://doi:10.1111/acel.12344.
- Mooney EC, Holden SE, Xia XJ, Li Y, Jiang M, Banson CN. et al. Quercetin preserves oral cavity health by mitigating inflammation and microbial dysbiosis. Front Immunol. 12:774273. https://doi:10.3389/fimmu.2021.774273.

Cite this article: Ahuja A, Patel N. Antisenescence therapy: The next leap in periodontal medicine *J Dent Panacea*. 2025;7(3):123-.